向善而生的AI助盲,让AI多一点,障碍少一点******
有人说,盲人与世界之间,相差的只是一个黎明。在浪潮信息研发人员的心中,失去视力的盲人不会陷入永夜,科技的进步正在力图给每一个人以光明未来。
AI助盲在人工智能赛道上一直是最热门的话题之一。以前,让失明者重见光明依靠的是医学的进步或“奇迹”。而随着以“机器视觉+自然语言理解”为代表的多模态智能技术的爆发式突破,更多的失明者正在借助AI提供的感知、理解与交互能力,以另一种方式重新“看见世界”。
新契机:多模态算法或将造福数以亿计失明者
科学实验表明,在人类获取的外界信息中,来自视觉的占比高达70%~80%,因此基于AI构建机器视觉系统,帮助视障患者拥有对外界环境的视觉感知与视觉理解能力,无疑是最直接有效的解决方案。
一个优秀的AI助盲技术,需要通过智能传感、智能用户意图推理和智能信息呈现的系统化发展,才能构建信息无障碍的交互界面。仅仅依靠“一枝独秀”超越人类水平的单模态人工智能比如计算机视觉技术还远远不够,以“机器视觉+自然语言理解”为代表的多模态算法的突破才是正确的新方向和新契机。
多个模态的交互可以提升AI的感知、理解与交互能力,也为AI理解并帮助残障人士带来了更多可能。浪潮信息研发人员介绍说,多模态算法在AI助盲领域的应用一旦成熟,将能够造福数以亿计的失明者。据世卫组织统计,全球至少22亿人视力受损或失明,而我国是世界上盲人最多的国家,占世界盲人总数的18%-20%,每年新增的盲人数量甚至高达45万。
大挑战:如何看到盲人“眼中”的千人千面
AI助盲看似简单,但多模态算法依然面临重大挑战。
多模态智能算法,营造的是沉浸式人机交互体验。在该领域,盲人视觉问答任务成为学术界研究AI助盲的起点和核心研究方向之一,这项研究已经吸引了全球数以万计的视障患者参与,这些患者们上传自己拍摄的图像数据和相匹配的文本问题,形成了最真实的模型训练数据集。
但是在现有技术条件下,盲人视觉问答任务的精度提升面临巨大挑战:一方面是盲人上传的问题类型很复杂,比如说分辨冰箱里的肉类、咨询药品的服用说明、挑选独特颜色的衬衣、介绍书籍内容等等。
另一方面,由于盲人的特殊性,很难提取面前物体的有效特征。比如盲人在拍照时,经常会产生虚焦的情况,可能上传的照片是模糊的或者没有拍全,或者没拍到关键信息,这就给AI推理增加了难度。
为推动相关研究,来自卡内基梅隆大学等机构的学者们共同构建了一个盲人视觉数据库“VizWiz”,并发起全球多模态视觉问答挑战赛。挑战赛是给定一张盲人拍摄的图片和问题,然后要求给出相应的答案,解决盲人的求助。
另外,盲人的视觉问答还会遭遇到噪声干扰的衍生问题。比如说,盲人逛超市,由于商品外观触感相似,很容易犯错,他可能会拿起一瓶醋却询问酱油的成分表,拿起酸奶却询问牛奶的保质期等等。这种噪声干扰往往会导致现有AI模型失效,没法给出有效信息。
最后,针对不同盲人患者的个性化交互服务以及算法自有的反馈闭环机制,同样也是现阶段的研发难点。
多解法:浪潮信息AI助盲靶向消灭痛点
AI助盲哪怕形式百变,无一例外都是消灭痛点,逐光而行。浪潮信息多模态算法研发团队正在推动多个领域的AI助盲研究,只为帮助盲人“看”到愈发精彩的世界。
在VizWiz官网上公布的2万份求助中,盲人最多的提问就是想知道他们面前的是什么东西,很多情况下这些物品没法靠触觉或嗅觉来做出判断,例如 “这本书书名是什么?”为此研发团队在双流多模态锚点对齐模型的基础上,提出了自监督旋转多模态模型,通过自动修正图像角度及字符语义增强,结合光学字符检测识别技术解决“是什么”的问题。
盲人所拍摄图片模糊、有效信息少?研发团队提出了答案驱动视觉定位与大模型图文匹配结合的算法,并提出多阶段交叉训练策略,具备更充分的常识能力,低质量图像、残缺的信息,依然能够精准的解答用户的求助。
目前浪潮信息研发团队在盲人视觉问答任务VizWiz-VQA上算法精度已领先人类表现9.5个百分点,在AI助盲领域斩获世界冠军两项、亚军两项。
真实场景中的盲人在口述时往往会有口误、歧义、修辞等噪声。为此,研发团队首次提出视觉定位文本去噪推理任务FREC,FREC提供3万图片和超过25万的文本标注,囊括了口误、歧义、主观偏差等多种噪声,还提供噪声纠错、含噪证据等可解释标签。同时,该团队还构建了首个可解释去噪视觉定位模型FCTR,噪声文本描述条件下精度较传统模型提升11个百分点。上述研究成果已发表于ACM Multimedia 2022会议,该会议为国际多媒体领域最顶级会议、也是该领域唯一CCF推荐A类国际会议。
在智能交互研究方面上,浪潮信息研发团队构建了可解释智能体视觉交互问答任务AI-VQA,同时给出首个智能体交互行为理解算法模型ARE。该研究成果已发表于ACM Multimedia 2022会议。该研究项目的底层技术未来可广泛应用于AI医疗诊断、故事续写、剧情推理、危情告警、智能政务等多模态交互推理场景。
眼球虽然对温度并不敏感,但浪潮信息的研发团队,却在努力让盲人能“看”到科技的温度,也希望吸引更多人一起推动人工智能技术在AI助盲、AI反诈、AI诊疗、AI灾情预警等更多场景中的落地。有AI无碍,跨越山海。科技的伟大之处不仅仅在于改变世界,更重要的是如何造福人类,让更多的不可能变成可能。当科技成为人的延伸,当AI充满人性光辉,我们终将在瞬息万变的科技浪潮中感受到更加细腻温柔的善意,见证着更加光明宏大的远方。
会打游戏,就能成为电竞选手?******
中新网北京2月2日电 (金旭 徐文欣)指尖争锋,争分夺秒;英雄出击,狭路相逢。很多人羡慕电竞选手的风光无限,也有很多人将电子竞技与打游戏画上等号。但他们了解真实的电竞世界吗?
“俱乐部的生活比较单调,除了睡觉、吃饭、洗漱,基本所有时间都在进行高强度训练。每天中午12时左右起床,下午2时前到训练室,经常训练到次日凌晨。”作为职业选手的shad0w,早已习惯了电竞选手的枯燥生活。
近日,在中新社“东西问·中外青年对话”中,中国互联网协会电子竞技工作委员会副主任委员李杰、中国传媒大学动画与数字艺术学院副院长陈京炜、《王者荣耀》职业选手曹志顺(游戏ID:久诚)、意大利华裔《英雄联盟》职业选手赵志强(游戏ID:shad0w)就中国电竞产业展开对话,畅聊电竞选手的职业发展之路。
如果你走进电竞选手的生活,便会深感他们训练的辛苦与生活的单调。其实,电子竞技选手需要体力、脑力、手眼协调等多方面的高度协作才能胜任。
即便如此,电竞选手也常被贴上“不务正业”“网瘾重灾区”的标签。shad0w表示,自己从“网瘾少年”到顶级选手,也曾不被父母理解,但随着社会对电竞职业认可度的提升及自身取得优异成绩,家人也转变观点,支持他的电竞事业。
久诚在电竞中收获了成长,他叮嘱有电竞梦的青少年,电竞不是无节制沉溺于游戏的借口,成为职业选手需要天赋,也需要艰苦的训练,希望大家不要因为过度游戏而忽略了日常生活和学业。
“电子竞技不等于打游戏。”陈京炜说,冠军是电竞选手的目标,快乐则是游戏玩家的追求。电竞选手在比赛中体现出来的勇往直前和无所畏惧与竞技体育精神相通,它们跨越文化,激励着一代代中外青年,也激励着国内的电竞生态走向成熟。
“作为集科技、竞技、娱乐与社交于一身的新兴体育产业,电竞链条价值凸显,产业联动效应不断提升。”李杰表示,近年来,电竞职业联赛不断“破圈”,社会对电竞的认同与日俱增,加之游戏直播行业和手游产品的迅速兴起,中国电竞产业增长势头强劲。
李杰说,1999年10月1日,中国最早的电子竞技俱乐部成立。彼时,听说过“电竞”这个词的中国人寥寥无几,当下,中国电竞用户已超5亿人,成为全球最大的电竞市场。
与此同时,中国电竞产业的繁荣也对各类人才提出更多的要求。
针对越来越多的高校开设电竞专业,陈京炜表示,电竞是一个非常长的产业链,可以分上游、中游、下游。上游主要集中在游戏研发;中游包括赛事组织、运营和导编播;下游直接面向受众,包括竞技员、俱乐部、解说等。虽然不同学校对培养方向和细分领域的选择会有所侧重,但都集中在培养上游和中游的电竞专业人才上,倾向于理论和实践相结合的教学模式。(完)
(文图:赵筱尘 巫邓炎)